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ABSTRACT

The Korteweg-de Vries equation was originally derived as a model for

unidirectional propagation of water waves. This equation possesses a special

class of traveling-wave solutions corresponding to surface solitary waves. It

also has permanent-wave solutions which are periodic in space, the so-called

cnoidal waves. A classical observation of Korteweg and de Vries was that the

solitary wave is obtained as a certain limit of cnoidal wavetrains.

This result is extended here, in the context of the Korteweg-de Vries

equation. It is demonstrated that a general class of solutions of the

Korteweg-de Vries equation is obtained as limiting forms of periodic

solutions, as the period becomes large.
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SIGNIFICANCE AND EXPLANATION

The Korteweg-de Vries equation was originally derived as a model for

unidirectional propagation of water waves. This equation possesses a special

class of traveling-wave solutions which are periodic in space, the s-called

cnoidal waves. A classical observation of Korteweg and de Vries was that the

solitary wave is obtained as a certain limit of cnoidal wavetrains.

This result is extended here, in the context of the Korteweg-de Vries

equation. It is demonstrated that a general class of solutions of the

Korteweg-de Vries equation is obtained as limiting forms of periodic

solutions, as the period becomes large.

In practice, the KdV equation (as the Korteweg-de Vries equation will be

referred to henceforth) is often used in the context of an initial-value

problem. That is, the state of the medium to which the equation pertains is

supposed known at a given instant of time. Inquiry is then focused on the

subsequent evolution of the medium. The corresponding specification for the

KdV equation is to give the value of the dependent variable n(x,t) at, say,

t = 0, and for all real x. As n typically represents a relative

displacement of the medium in question, n(x,O) is referred to as an initial

wave profile. In case the initial wave profile is a smooth function decaying

to 0 at *-, the resulting system is designated the pure initial-value

problem for the KdV equation. An alternative, which has also been used in

practical studies relating to the KdV equation, is to have the initial wave

profile be a given periodic function. This latter situation is called the

periodic initial-value problem for the KdV equation. The main result of this

paper may be formulated somewhat more explicitly as saying that a certain

class of solutions of the periodic initial-value problem converges to

solutions of the pure initial-value problem in a particular limit of

indefinitely large period.

Such a result has several consequences. One concerns the numerical

solution of the pure initial-value problem for the KdV equation using a

computer code for the periodic initial-value problem. This is a commonly-used
strategy for various wave equations which is convenient for certain technical

reasons. For example, the periodic problem is much easier to analyze. And it

has the advantage of not requiring the specification of bounday conditions at

some finite point, which a direct attack on the pure initial-value problem

would necessarily entail, due to the truncation of the infinite domain. The

theory developed here shows that, in principle, this strategy is not ill-
founded, at le~st for initial data having bounded support, or decaying to 0

sufficiently rapidly at t-.

Another interesting suggestion concerns the Inverse-scattering theory for

the KdV equation. This theory pertains, in somewhat different forms, to both

the pure initial-value problem and the periodic initial-value problem. Many

fruitful studies have been undertaken to elucidate these ideas, and the

associated Hamiltonian structure, in the context of the KdV and other wave
equations. The results of sections 2 and 3 give credance to the suggestion

that the inverse-scattering theory for the periodic and pure initial-value

problems are related, in the limit of large wavelength.

The responsibility for the wording and views expressed in this descriptive

summary lies with MRC, and not with the author of this report.



CONVERGENCE OF PERIODIC WAVETRAINS

IN THE LIMIT OF LARGE WAVELENGTH

Jerry L. Bona*

This paper is dedicated, fondly and with admiration,

to Professor L. J. F. Broer on his 65th birthday.

1. Introduction. In 1895, Korteweg and de Vries (1] derived the nonlinear partial

differential equation

nt + nx 
+ 

nx 
+ 

nxxx 
= 

0

as a model for waves propagating on the surface of water which is confined within a

rectangular canal. In the form depicted in (1), the dependent variable n represents the

vertical deviation of the free surface from its equilibrium position while the independent

variables x and t are proportional, respectively, to distance measured in the direction

of propagation, and to elapsed time. These variables are dimensionless, but unscaled. Of

course a number of assumptions are involved in arriving at (1) as a model. These will play

no explicit role in the theory developed here, and we may therefore safely refer the reader

to the articles of Benjamin [2], Benjamin et. al. [31, Broer [4, 5, 61, Broer et. al. [7],

and the book of Whitham [8], for detailed commentary on these issues.

An especially interesting aspect of this equation is a one-parameter family of

traveling-wave solutions,

n(x,t) = SC(X,t) 
=  

3CCsech Ix - (C + 1)t} , (2)

which, for 0 < C << I, correspond generally to the solitary wave first observed in the

field by Scott Russell [9]. Also contained in the original paper of Korteweq and de Vries

was an analysis of spatially-periodi7 wavetrains of permanent form, the so-called cnoidal

waves. A class of these has the form2 1 /2
n(x,t) - 3C-cn

2
f2 (C - d) [x - (C + d + 1)t);k} , (3)
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where C > 0 > d, k
2 

= C/C - d, and cn is the Jacobian elliptic function. This

solution is periodic of period

4K(k)
P (C - d) 1/ 2

where K(k) is the complete elliptic integral of the first kind. Since both the cnoidal

wavetrains (3) and the solitary-wave solutions (2) of equation (1) were obtained in closed

form, it was a simple matter for Korteweg and de Vries to determine that their solitary-

wave solutions were an appropriate limit of cnoidal waves as the period p approaches

infinity. (As d + 0, k + 1, the elliptic function cn degenerates into the hyperbolic

function sech, uniformly on bounded subsets of the real line R, and the period p

becomes infinite.)

Since the pioneering work of Korteweg and de Vries, an analogous theorem has been

established in the context of solitary-wave solutions of the two-dimensional Euler

equations (cf. Amick and Toland [101 and the references included therein). Results along

the same lines have also been obtained for solitary waves arising in other contexts as well

(cf. Benjamin, Bona and Bose (113, Bona and Bose (123, Bona, Bose and Turner [131, and

Turner (14]).

In the next section, a simple criterion is presented that guarantees the convergence

of spatially-periodic waves in the limit of large period. This result is not restricted to

waves of permanent form. In section three, it is shown that a general class of solutions

of the KdV equation, as (1) will be referred to henceforth, may be obtained as limits of

periodic solutions. In the last section, some implications of the theory are briefly

considered. Finally, in the appendix, a proof is outlined of the main result in section

two.

2. A Criterion for Convergence of Periodic Wavetrains. To state the result in view

here, some preliminary notions are needed. For any interval I in R, let L2 I) denote

the Hilbert space of real-valued measurable and square-integrable functions defined on

I. For a non-negative integer k, the Hilbert space Hk(I) is the linear subspace of

-2-



L2 (I) whose first k (distributional) dexivatives lie in L2 (I). The norm of a

function f in Hk (I) is

k J)2 1/,
Lffgk - S L2(1 ) 2 (4)

w e eH 
( ) J.0 2

where

10 L2(I) {f g(x)2dx}/2
2 1

Of course H9(1) - L2 (I).

We shall also have use for periodic versions of these spaces. The letter p will be

systematically used to denote a half-period of a periodic function. For k as above, H

p

will denote the class of functions f : R + R, periodic of period 2p, and such that f

and its first k derivatives axe square-integrable over the interval [-p,pl. The norm of

a function in H
k  

is just that of Hk ([-9,p1).p

To follow the evolution in time of s.lutions of the KdV equation, the spaces C(O,T;X)

are introduced. If X ig any banach space, and J a closed real interval, then C(J;X)

is the collection of bounded continuous functions u : J + X. This space carries a Banach-

space structure, induced by the norm

RUlcIJlx) = sup Nu(t)l ,
teJ

where I IX denotes the norm defined on X. For T > 0, the notation C(0,T;X) is just

an abbreviation for C(J;X) where J = (0,T].

The KdV equation has a satisfactory theory of existence, uniqueness and continuous

k k
dependence corresponding to initial data in H (M) or in HP , for k > 2. In physical

terms, it is imagined that the state of the system is known completely at a given instant

of time, and that inq'iry is made about the subsequent develonment of the system. Thus

equation (7) is posed, subject to the auxillary condition

n(x,o) = f(x) ,

for x e R. The results of Bona and Smith [151 or Kat: !161 imply the following.

-3-
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PROPOSITION 1. Let f e H k(R), where k > 2. Then for any T > 0, there is a

unique solution n of (1) in C(0,T;H k(R)) satisfying the initial condition

n(x,O) - f(x), for all x in R. The correspondence f - n is continuous from

H k() tc C(0,T;H k(R)). Moreover, for each integer j in the range [0,X] there is a

polynomial P1i with positive coefficients such that, for all t > 0,

Ii (R) H H (i)

Exactly the same results hold good if, for given p > 0, H
k 

replaces H k(R)
p

throughout. The same polynomial Pj intervenes in the bound corresponding to (5),

independently of p

Remarks. If k ) 4, then the solution, guaranteed by the above proposition to exist,

is classical. That is, n and all its partial derivatives appearing in the KdV equation

are bounded and continuous functions of x and t, and the equation is satisfied

pointwise everywhere. Otherwise the solution is interpreted in the distributional sense.

The situation where the initial data lies in Hk (), and so decays to zero at -,

will be referred to as the pure initial-value problem for KdV. The alternate

specification, namely f in H 
k  

for some p > 0, will be designated the periodic
p

initial-value problem for KdV. Botb of these types of problem have been used in

applications of the KdV equation.

Here is the promised result concerning convergence of periodic solutions of the KdV

equation.

PROPOSITION 2. Let k 2. Let f e HX (), and for p > p 0 ' let f e H
k  

be
P p

given. Suppose that

If - fp I H 0 , (6)
H (-p,p])

as p * -. Let n and r be the solutions of the KV equation correspondino to the
p

-4-



initial data f and f, respectively, for all p A p0. Then for any T > 0 and bounded

interval I in R,

ni + n, in C(0,T;H k-2(I))p

as p .

A proof of this result is outlined in the appendix. In the next section, simple

constructions are presented which lead to situations in which (6) is satisfied.

3. Solutions of the KdV Equation as Limits of Periodic Wavetrains. Suppose there is

provided a reasonably smooth initial wave profile f, say in Hk () where k ) 2. When

can f be approximated, in the sense specified in (6), by smooth periodic functions? The

answer is that this is always possible. So, because of proposition 2, the solutions of the

KdV equation corresponding to the initial profile f, which are guaranteed to exist by

virtue of proposition 1, are always limits of periodic solutions of the KdV equation.

Here we briefly sketch two different methods of approximating f by periodic

wavetrains. Let p0 > 0 be specified and let 0 R [0,1] be an infinitely

differentiable function with ex) -I for jxj 4 p0 /2 and B(x) = 0 for 1xl P0  For

P ) p0' define fp as follows:

f(x), for jx P- p 0i
f (x) . f(x)o(x - p + p 0 ), for p - p0  x 4 p , (7)

f(x)(x + p - p 0), for -p < x p p0 - p'

and extend f to the rest of R by demanding it be periodic of period 2p. Rouqhly

speaking, f has been restricted to the interval (-p,p] and then altered near the

endpoints of this interval. The altered function vanishes, with all its derivatives up to

order k - 1, at tp, and consequently it may be extended by periodicity without loss of

smoothness. It is straightforward to check that (6) holds for (f I
p plp0

Here is another way of approximating f by periodic functions. First approximate

f in H k(R) by infinitely differentiable functions with bounded support. (The support of
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a function q is the closure of [x q(x) 0). The class of all smooth functions with

bounded support will be denoted C0 .) This latter approximation is always possible (cf.

Lions and Magenes [171, chapter 1). So let {p ) S C- have the properties that
p p>0 -0

op . f in Hk () and each p has its support contained in [-p,pJ. Define *p by the

formula

(x)= x + 2np) (8)
p p

k
Plainly * p lies in H , for all p > 0. Condition (6) is easily verified in this case

as well.

In particular, if f, itself, has bounded support, or if, for example, there are

positive constants C and 6 so that

I f ( J ) ( x ) l C I I 1
(I + IxI) 1 + 6

for 0 C j 4 k, then formula (8) may be applied with f replacing *, for all p > 0.
P

This yields a 2p-periodic function fp, with

f (x) - f(x + 2np) , (9)
p

which lies in H 
k
. Again, condition (6) is easily established.

p

The above discussion is formalized in the following proposition.

k
PROPOSITION 3. Let f e H (U), where k ) 2. Let T > 0 be fixed and let

e C(0,T;H k(R)) be the solution of the KdV equation with initial data f. Then, for

all p > 1, there are periodic solutions n in H
k  

of the KdV equation such that, for
p p

each interval I in R,

p + n in C(0,T;H k-2(1))
p

as p + -.

-6-



4. Some Consequences. The idea outlined above, and dealt with in more detail in the

appendix, has at least two implications worthy of comment.

The first concerns the numerical solution of the pure initial-value problem for the

KdV equation using a computer code for the periodic initial-value problem. This is a

commonly-used strategy for various wave equations (cf. Meiss and Pereira [18] for a recent

instance) which is convenient for certain technical reasons. For example, the periodic

problem is much easier to analyze. And it has the aivantaqe of not requiring the

specification of boundary conditions at some finite point, which a direct attack on the

pure initial-value problem would necessarily entail, due to the truncation of the infinite

domain. The theory developed here shows that, in principle, this strategy is not ill-

founded, at least for initial data having bounded support, or decaying to 0 sufficiently

rapidly at t-. (For instance, a solitary-wave profile, as in (2), has, as a practical

matter, bounded support.) For in such a case, if the period length 
2
p is taken a good

deal larger than the support of the initial data f, then solving the periodic problem

with initial data fp, as in (9), yields results agreeing closely with the solution of the

pure initial-value problem with data f.

To be useful in practice, one would need to supplement the above remarks with an

effective estimate of the relationship between the time-interval [0,T] and the period

2p over which the solution up of the periodic problem remains a faithful representation

of the solution u of the pure initial-value problem. Without going into details, it

appears that up will generally remain close to u at least on a time scale of order

(p - m)/IfI 1' where it is supposed that the support of the initial data f lies in the
H

interval (-m,m]. This conclusion subsists on several presumptions, and so should be

viewed as conjectural.

One of the ingredients that point to the just-discussed estimate are some very simple

facts that derive from the inverse-scattering theory for the KdV equation. This theory

pertains, in somewhat different forms, to both the pure initial-value problem and the

periodic initial-value problem. Many fruitful studies have been undertaken to elucidate

these ideas, and the associated Hamiltonian structure, in the context of the KdV and other

-7-



wave equations (cf. Broer (191, Deift and Trubowitz [201, McKean and van Moerbeke [211 and

Trubowitz [221). The results of sections 2 and 3 indicate that the inverse-scattering

theory for the periodic and pure initial-value problems are related, in the limit of large

wavelength. In fact, one may be a qood deal more precise about this relationship, but the

issue will not be explored here.

Finally, it is worth pointing out that the detailed structure of the KdV euation is

not crucial to the conclusions established in propositiona 2 and 3. Tndeed, a purusal of

the proof in the appendix will convince the reader that a similar theory may be established

for a whole range of one-dimensional nonlinear wave equations.

Appendix. A proof of proposition 2 is presented here. The proof calls upon some

elementary functional analysis together with the theory for the KdV equation, as set forth

in proposition 1.

For the purposes of the present section, some additional function classes are

needed. Let X be any Banach space. Let I ( q < - and let J be an open interval in

R. We denote by L qJ;X) the (equivalence classes of) measurable functions u :J X

such that

lul {f lu(t)n qdt}/
q 

<
Lq (J;X) j

For q -, L (J;X) is the measurable functions u : 3 + X which are essentially

bounded. The norm on this space is

lul - essential sup lu(t)l
L (J;X) teJ

These are all Banach spaces in their own right. Additionally, if I < q 4; -, and X is

reflexive, then Lq(JX) is the dual space of Lr(jX*), where r - q/(q - 1). (If

q = =, r = 1.) Hence, according to the general theory of Banach spaces, any closed ball

of radius R, say, in Lq(J;X) is compact for the weak-star topology on LI(J:X) induced

by Lr(J;X).



For J and X as above, 0'(J;X) denotes the X-valued distributions defined nn J.

Formally,

01(J;X) = S(C 0 (J);X)

where C (J) is the set of infinitely-differentiable real-valued functions defined n J,

and having compact support in J. And, B(Y,Z) denotes the continuous linear maoplnas

between the linear spaces Y and Z. If u e V'(J;X), its distributional ierivative is

defined by
du _~
d ) dt

for all 0 in C0 (J). If u e Lq(J;X), then u corresponds to an element zr ',7;V

via the rule

u($) = r u(t) (t)dt
J

for 0 in Co (J). The integral is X-valued, and converges since t has compact

support. Thus one can always define the derivative of elements in Lg(J;X), at least in

the foregoing weak sense. For details concerning these spaces, the reader is urged to

consult Lions and Magenes [171 or Lions [23).

Let I be a fixed bounded interval in R and let T > 0. Let k and m be

integers, with k > m. Let

W(I) = {u e L 2(0,T;H k(I)) : atu e L 2(0,T;Hm(I))}

W(1) is equipped with the norm

NUN R UN + 0 uh
W(I) L 2(0,T;Hk(1)) t L2 (0,T;Hm(i))

(Here the abbreviation Lq(O,T;X) for Lq((0,T);X) has been introduced.) It follows from

a general compactness lemma (cf. Lions [231, ch. 1, section 5) that W(I) is compactly

imbedded in L 2(0,T;H k-1I)). Define

Y(I) 
= 

fu e L2(0,T;Hk-I(1)) : t
u e L2(0,T;Hm(1)).

Y(I) is equipped with a norm analogous to W(I). It is again a general result (cf. Lions

and Maqenes [171, ch. 1, section 3.1) that Y(I) is continuously imbedded in

C(O,T;H (k+m-)/2(I)). In particular, for m = k - 3, we have

-9-



W (1) - fu e L 2(0,T;Hk (I)) : u @ L 2(0,T;H k-3(I)))k t

compactly imbedded in C(n',TH k-2(t)).

With these preliminary remarks in hand, the proof is now straightforward. Let fP,

for p > P0, and f be given, as in the statement of proposition 2. Let u , for

P i po, and u be the solutions of the KdV equation corresponding to the initial data

fp, for p P ' and f, respectively. Fix T ' 0 and a bounded interval I in R.

First note that, because of the a priori bou-ds stated in (5) of proposition 1, and because

of the assumption (6), for 0 < j e k,

lU p (*,t) Hj (1) < lUp(.,t) H PI(ifp I H3 )
p p

P(IflJ 1) =M ,

H i R)+

say, for all t ) 0, provided p is sufficiently large. Thus, for 0 < j k,

lim sup lu p(-,t)I H M. (10)

independently of the interval I. In particular, using the differential equation (1), and

elementary estimates, we deduce that

lim sup latup(.,t) ( M + cm2 +M
tp Hk

3  k- k k k11

say. Here c is a constant depending only on k.

Now let (p1. 1 be any sequence of half-periods, with pj * , as j * -. Let

u s - UP. Let also (I I}£. be an incrsasing sequence of closed bounded intervals in

R with R - U I . Then because of (10) and (11),

{u is a bounded sequence in W k(I ),

fu is a bounded sequence in L (0,T;H (I

(at u jI is a bounded sequence in L (0,TH k3)(I),

for all Z. Hence, for each Z, fu I lies in a compact subset of C(0,T;H k2(I )) and

of L (0,T;H (I£)) with the weak-star topology. Similarly, (atuj lies in a compact

-10-
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subset of L (0,T;Hk
3 
(I)) with the weak-star topology. It follows, by a diagonalization

argument, that there is a subsequence [p r}r- of (pJ);- and a function U, which lies

in L (O,TH k(I )) for all X, such that

i) ur  u U, weak-star in L(0,TIHk (I
r r

ii) a u ' a U, weak-star in L(0,T;H k-3(1 (12)
t r tL(OTH I ).(2

iii) u r U, strongly in C(O,T;H k-(I 

as r * , for each t. (Note for (ii) that one infers first that *tu V, for some

V, and then deduces that V = at U since (i) certainly implies atur  atU at least for

V'(0,T;H k(I£)f. It is straightforward to show that U is a (distributional) solution of

the KdV equation, and that U(x,O) S f(x).

Let L > 0 be given. Then, since weak-star convergence is lower semicontinuous

relative to the norm in the relevant space,

jul ( lim sup lu I k 4 •

L (0,T;H ([-L,L])) r+- L (0,T;H ([-L,L]))

The constant M. does not depend on L. So the monotone convergence theorem implies that,

for almost every t in (0,T], U(',t) lies in H (k), and that

IU( *,t) kI

Hk C1) k

Thus U is seen to lie in L'(0,T;H k(R)). In consequence of the uniqueness theorem in

proposition I (which continues to hold in this somewhat wider function class), U , u,

almost everywhere in R x [0,T]. It now follows from (12, iii), and that fact that

IC It, for large X, that as r ,

u + U, in C(0,T;H-(I)) (13)
r

it has been shown that an arbitrary sequence of half-periods {p with p + , as

j --, admits a subsequence for which the conclusion (13) is valid. It follows

immediately that

-11-



u . U, in C(0,TH k-2(M))
p

as p Since I and T were arbitrary, the proposition is established.

Its worth remarking, finally, that the conclusion of proposition 2 can be

strengthened. However, the proof becomes more technical. Since the basic thrust of the

prooosition is the same, whether the conclusion be sharply stated or not, the development

contained herein has been preferred.
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